228 research outputs found

    Let my people go (home) to Spain: a genealogical model of Jewish identities since 1492

    Get PDF
    The Spanish government recently announced an official fast-track path to citizenship for any individual who is Jewish and whose ancestors were expelled from Spain during the inquisition-related dislocation of Spanish Jews in 1492. It would seem that this policy targets a small subset of the global Jewish population, i.e., restricted to individuals who retain cultural practices associated with ancestral origins in Spain. However, the central contribution of this manuscript is to demonstrate how and why the policy is far more likely to apply to a very large fraction (i.e., the vast majority) of Jews. This claim is supported using a series of genealogical models that include transmissable "identities" and preferential intra-group mating. Model analysis reveals that even when intra-group mating is strong and even if only a small subset of a present-day population retains cultural practices typically associated with that of an ancestral group, it is highly likely that nearly all members of that population have direct geneaological links to that ancestral group, given sufficient number of generations have elapsed. The basis for this conclusion is that not having a link to an ancestral group must be a property of all of an individual's ancestors, the probability of which declines (nearly) superexponentially with each successive generation. These findings highlight unexpected incongruities induced by genealogical dynamics between present-day and ancestral identities.Comment: 6 page, 4 figure

    Packing-Limited Growth

    Get PDF
    We consider growing spheres seeded by random injection in time and space. Growth stops when two spheres meet leading eventually to a jammed state. We study the statistics of growth limited by packing theoretically in d dimensions and via simulation in d=2, 3, and 4. We show how a broad class of such models exhibit distributions of sphere radii with a universal exponent. We construct a scaling theory that relates the fractal structure of these models to the decay of their pore space, a theory that we confirm via numerical simulations. The scaling theory also predicts an upper bound for the universal exponent and is in exact agreement with numerical results for d=4.Comment: 6 pages, 5 figures, 4 tables, revtex4 to appear in Phys. Rev. E, May 200

    An Objective Definition of Damage Spreading - Application to Directed Percolation

    Full text link
    We present a general definition of damage spreading in a pair of models. Using this general framework, one can define damage spreading in an objective manner, that does not depend on the particular dynamic procedure that is being used. The formalism is applied to the Domany-Kinzel cellular automaton in one dimension; the active phase of this model is shown to consist of three sub-phases, characterized by different damage-spreading properties.Comment: 10 pages, RevTex, 2 ps figure

    The Fiber Walk: A Model of Tip-Driven Growth with Lateral Expansion

    Get PDF
    Tip-driven growth processes underlie the development of many plants. To date, tip-driven growth processes have been modelled as an elongating path or series of segments without taking into account lateral expansion during elongation. Instead, models of growth often introduce an explicit thickness by expanding the area around the completed elongated path. Modelling expansion in this way can lead to contradictions in the physical plausibility of the resulting surface and to uncertainty about how the object reached certain regions of space. Here, we introduce "fiber walks" as a self-avoiding random walk model for tip-driven growth processes that includes lateral expansion. In 2D, the fiber walk takes place on a square lattice and the space occupied by the fiber is modelled as a lateral contraction of the lattice. This contraction influences the possible follow-up steps of the fiber walk. The boundary of the area consumed by the contraction is derived as the dual of the lattice faces adjacent to the fiber. We show that fiber walks generate fibers that have well-defined curvatures, enable the identification of the process underlying the occupancy of physical space. Hence, fiber walks provide a base from which to model both the extension and expansion of physical biological objects with finite thickness.Comment: Plos One (in press
    • …
    corecore